53 research outputs found

    New Characterizations and Efficient Local Search for General Integer Linear Programming

    Full text link
    Integer linear programming (ILP) models a wide range of practical combinatorial optimization problems and has significant impacts in industry and management sectors. This work proposes new characterizations of ILP with the concept of boundary solutions. Motivated by the new characterizations, we develop an efficient local search solver, which is the first local search solver for general ILP validated on a large heterogeneous problem dataset. We propose a new local search framework that switches between three modes, namely Search, Improve, and Restore modes. We design tailored operators adapted to different modes, thus improving the quality of the current solution according to different situations. For the Search and Restore modes, we propose an operator named tight move, which adaptively modifies variables' values, trying to make some constraint tight. For the Improve mode, an efficient operator lift move is proposed to improve the quality of the objective function while maintaining feasibility. Putting these together, we develop a local search solver for integer linear programming called Local-ILP. Experiments conducted on the MIPLIB dataset show the effectiveness of our solver in solving large-scale hard integer linear programming problems within a reasonably short time. Local-ILP is competitive and complementary to the state-of-the-art commercial solver Gurobi and significantly outperforms the state-of-the-art non-commercial solver SCIP. Moreover, our solver establishes new records for 6 MIPLIB open instances. The theoretical analysis of our algorithm is also presented, which shows our algorithm could avoid visiting unnecessary regions and also maintain good connectivity of targeted solutions.Comment: 36 pages, 2 figures, 7 table

    Unified Human-Scene Interaction via Prompted Chain-of-Contacts

    Full text link
    Human-Scene Interaction (HSI) is a vital component of fields like embodied AI and virtual reality. Despite advancements in motion quality and physical plausibility, two pivotal factors, versatile interaction control and the development of a user-friendly interface, require further exploration before the practical application of HSI. This paper presents a unified HSI framework, UniHSI, which supports unified control of diverse interactions through language commands. This framework is built upon the definition of interaction as Chain of Contacts (CoC): steps of human joint-object part pairs, which is inspired by the strong correlation between interaction types and human-object contact regions. Based on the definition, UniHSI constitutes a Large Language Model (LLM) Planner to translate language prompts into task plans in the form of CoC, and a Unified Controller that turns CoC into uniform task execution. To facilitate training and evaluation, we collect a new dataset named ScenePlan that encompasses thousands of task plans generated by LLMs based on diverse scenarios. Comprehensive experiments demonstrate the effectiveness of our framework in versatile task execution and generalizability to real scanned scenes. The project page is at https://github.com/OpenRobotLab/UniHSI .Comment: A unified Human-Scene Interaction framework that supports versatile interactions through language commands.Project URL: https://xizaoqu.github.io/unihsi/ . Code: https://github.com/OpenRobotLab/UniHS

    Two New Families in the Stable Homotopy Groups of Sphere and Moore Spectrum*

    No full text

    Two Weighting Local Search for Minimum Vertex Cover

    No full text
    Minimum Vertex Cover (MinVC) is a well known NP-hard combinatorial optimization problem, and local search has been shown to be one of the most effective approaches to this problem. State-of-the-art MinVC local search algorithms employ edge weighting techniques and prefer to select vertices with higher weighted score. These algorithms are not robust and especially have poor performance on instances with structures which defeat greedy heuristics. In this paper, we propose a vertex weighting scheme to address this shortcoming, and combine it within the current best MinVC local search algorithm NuMVC, leading to a new algorithm called TwMVC. Our experiments show that TwMVC outperforms NuMVC on the standard benchmarks namely DIMACS and BHOSLIB. To the best of our knowledge, TwMVC is the first MinVC algorithm that attains the best known solution for all instances in both benchmarks. Further, TwMVC shows superiority on a benchmark of real-world networks
    • …
    corecore